If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19x^2-2x-17=0
a = 19; b = -2; c = -17;
Δ = b2-4ac
Δ = -22-4·19·(-17)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-36}{2*19}=\frac{-34}{38} =-17/19 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+36}{2*19}=\frac{38}{38} =1 $
| 3x12-2x=18 | | 16x-3x^2=5 | | 1+6x=4x+23 | | m-6+6m=15 | | 13x+-12=12x+-12x+3.14 | | 8s-(5s+6)=1/1(20+6s) | | 425=-25b | | -4(t+92)=-8 | | 3-2x=x+30 | | x2+5=20 | | 4x+92=78 | | 1=23+x | | 13x+-12x=3.14 | | 4x+98+102=180 | | -2-6x=6x-110 | | 21x-20x=21 | | 21x-20x=8+13 | | 3x+2=4+4x | | 17-14y=-17 | | 8t+30=3t+55 | | 4500=1700+140b | | 17x-14=-17 | | 43=4(t+6)-1 | | 5(x+2)=3(x-16) | | 21x-20x+-13=8 | | 4(x+4)=2(x+30) | | 24-b=1 | | 8x+4=6x=6 | | 3^x=2x+5 | | t^2-2t=35 | | 93x-3=45 | | 21x+-13-20x=8 |